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n e  Hilbert space L2(sU(2)) as a representation space for the 
group sum x S W )  
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1. Institut fiir theoretische Physik, Technische Hochschule, Karlsplatz 13, A-1040 Vienna, 
Austria 

Received 18 July 1975, in final form 1 March 1976 

Abstract. The Hilbert space L’(SU(2)) is used as a representation space for a (unitary) 
representation of the direct product group SU(2)XSU(2) and the corresponding group 
algebra. Three different types of operators which are closely related to the representation 
theory of SU(2) are used to construct convenient operator bases whose elements are 
irreducible tensor operators with respect to SU(2) X SU(2). A complete set of irreducible 
tensor operators and useful operator identities are derived. 

1. Introdnetion 

A topic of considerable interest in mathematical physics is carrier spaces which are 
symmetric homogeneous spaces over some groups G. It is well known that such Hilbert 
spaces (invariant subspaces or coset spaces) turn up in various physical problems. Malin 
(1975) discussed the Weyl and Dirac equations in terms of functions over the group 
- SU(2); SijaEki (1975) used such a Hilbert space as a representation space for the goup  
SL(3, R), whose representation theory was successfully applied to nuclear rotational 
motion (Weaver and Biedenharn 1972) and to strong quantum gravitational fields in 
general relativity (Rosen 1966); Beers and Millman (1975) discussed convergence 
problems connected with the multipole expansion of radiation fields using SU(2) as the 
domain of the vector (tensor) harmonics; Hu (1973,1974) showed that the solutions of 
the Helmholtz equation for the Mixmaster universe in general relativity are equivalent 
to that of the quantum mechanical roblem of the asymmetric rotator, whose carrier 
space is just the coset space L (SO(3)); and Marshalek (1975) discussed the 
asymmetric-top model in nuclear physics, where a special class of irreducible tensor 
operators, which will be considered later, is used to represent the transition operator in 

of creation and destruction operators. Therefore, with regard to the physical 
part of the problem consists in defining appropriately a unitary represen- 

tation of a group G’ in a given Hilbert space, here L2(G), and another part in solving the 
Problem of how to label functions and/or operators with respect to G’. Thereby we 
understand by the labelling problem the construction of functions and/or operators 
which transform according to the unitary irreducible representations (unheps) of G‘. 

choice of the group G’ depends on the applications which one wants to consider. 
Besides this, for the labelling problem all subduction matrices belonging to a given 

of subgroups (depending on the physical problem) should also be well known. 

P 
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In the present paper we choose G as SU(2) and discuss the labelling problem for the 
direct product group G‘=SU(2)xSU(2). What we are primarily interested in is 
construct convenient o erator bases for the linear operator space containing dl 
operators defined in L (SU(2)). The main purpose Of this paper is to develop a 
mathematical framework which allows us to express any interaction operator (defined 
in ~ ~ ( S u ( 2 ) ) ,  or in an invariant subspace or in a coset space of the former) in terms of a 
symmetry-adapted operator basis. Problems of this kind are quite common in physical 
applications, like the vector harmonic expansions of radiation fields discussed by Beers 
and Millman (1975). Symmetry-adapted operator bases are bases whose elements are 
irreducible tensor operators (IT) with respect to the group in question. hrthermore, we 
require that the matrix elements of these operators are easily calculated and that 
basis consists of operators which arise in many physical problems. Operators of this 
type are the elements of the group algebra, of the Lie or enveloping algebra, or 
operators defined by matrix elements of unirreps (such as the spherical harmonic 
operators). 

The material is organized as follows. In 0 2 we define a unitary representation of 
Su(2) x SU(2) and a representation of the corresponding group algebra. In 0 3 we give 
the general definition of an irreducible tensor operator with respect to SU(2) x SU(2). 
In 0 4 we introduce IT within the group algebra and discuss in 0 5 IT which are closely 
related to the matrix elements of the unirreps of SU(2). Operator identities between 
special IT are derived in 0 6 where combinations of IT of both the preceding sections are 
considered. We can show that three different types of these IT are essential. For one of 
these types it can be shown that the operators form a complete set of IT so that every 
operator 0 in L’(SU(2)) can be expressed as a unique linear combination of these IT. In 
0 8 we discuss a special class of IT consisting of IT defined in P 5 and elements of the 
enveloping algebras of SU(2). Such operators nearly always occur in physical applica- 
tions. 

P 

2. L2(SU(2)) as a representation space for SU(2) x SU(2) and the corresponding 
group algebra 

The separable Hilbert space L2(SU(2)) is the set of all complex-valued square 
integrable functions where the scalar product is given by 

The set of elements 

{9a’,,=(2j+1)’’2D’,*,: j = O , &  1 , .  . . ; - j s m ,  k s j )  (2.3) 

can be used as a basis of L2(SU(2)), where the special functions D’,, are the usualmaavr 
elements of the unirreps of SU(2) (Rose 1957). 

Coleman 1968) allows us to use L’(SU(2)) in a natural way as carrier space f o r a u n i t v  
representation U of the direct product group SU(2) x SU(2). 

The definition of the left- and right-regular representation (Gel’fand et 

(2.4) 
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However, this representation U is not a faithful one. U is only isomorphic to SO(4, R). 
B~ means of the properties of the unirreps we obtain for 

i.e. the elements g k k t  -ism, k s j  transform according to the u-ep 
p(ol) @ Di*(w2) of SU(2) X SU(2). Because of the equivalence 

D’*(O) = D j ( W )  for all j (2.6) 

D j * ( W )  = UW(W)Uj+, (- l)i+k&,-k (2.7) 
we introduce, instead of (2.3), 

a’,,= 1 k’ $&k’U{,k= (2j+ l)’+kDe+ (2.8) 

the elements of another basis of L’(SU(2)) being already SU(2) X SU(2)-adapted since 
they transform according to rhe unirreps D”(wl, 02) = Di(ol)@ Di(w2): 

Therefore L2(SU(2)) decomposes into a direct sum of the unirreps Dij(u1, w2) j = 
0, 4’1, . . . under the action of the unitary representation U of SU(2) x SU(2). Each 
unirrep D”(ol, 02) occurs in U only once (Coleman 1968). 

Now we introduce the left- (‘L’Sa(SU(2))) and the right-group algebra (‘R’sB(SU(2))) 
for the definition of some special IT with respect to SU(2) X SU(2). The elements of 
‘”d(SU(2)) (i =left and right) are given by (o0 = (0, 0,O)): 

dcL(~ l )4W)U(~ l ,  WO), a E L’(SU(2)) (2.10) 

b E L2(SU(2)). (2.11) (R) 

”he  definition and the properties of the so called ‘units’ which are elements of a basis of 
(‘)4SU(2)) are well known (Naimark 1964): 

( L ) E i k =  (2j-k 1) dp(W1)D~k(W1)u(O1, WO) (2.12) I 
( R ) E i * k t =  (2f-k 1) I dp(W~)Di*kt(W~) ~ ( W O ,  W 2 )  (2.13) 

(i)ECk = (i)Edm (2.14) 

(2.15) (i) j (i) j” Emk = Sjj”Skm8,(i)E’,krF 
(2.16) 

(2.17) 

%ere fore the operators 

(L) Em,! i (R)EI” kk‘-  -(R) E k k ‘  j’ (L)E’,,,=EL~’~,~,~, (2.18) 

are composed of the commuting operators (2.12’13) can be seen as the 
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3. rr with respect to SU(2) x SU(2) 

According to the general definition (Lomont 1959) we call the set of operators 

{T$B: - A S Q S A ,  - B S b S B }  (3.1) 

U(ol, @Z)T$Bfl(Ol, 0 2 )  = D$a(@l)D~b(~Z)T;f’f’* (3.2) 

an IT of rank A, B with respect to SU(2) X SU(2) if its components transform according 
to the unirrep DAB(wI, o2)=DA(o1) @DB(oz): 

a’b‘ 

We suppose that the product of the operators on the left-hand side of equation (3.2) and 
the linear combinations on the right-hand side of equation (3.2) have a meaning in the 
usual sense as products and sums of operators in the Hilbert space L’(SU(2)). An 
equivalent definition can be given by means of the elements of the left- and right-Lie 
algebras of SU(2): 

(3.3) 

(3.5) 

1/2 AB 
[‘L’J*7 ‘GFI = [(A T Q)(A * a  + I)] Ta*l,b 

pL’J3, 2-3 = (3.4) 

[‘R’J3, 7-3 = bT,A,B. (3.6) 

11.2 AB [‘R’J*, T$T = [(B 7 b)(B * b 4- I)] Trsb+l 

Of course because of [ U(ol, 
algebras commute. They are given by 

U(oo, 02)] = 0 the elements of the left- and right-lie 

(3.9) 

[ ‘ R ’ ~ 3 f l ( ~ )  = i-ia7f(o). (3.10) 

In order to answer the question: which ranks A, B of IT can be realized in L2(srr!2))7 
it Suffices to remember that U is isomorphic to SQ(4, R) or to investigate the 
Wigner-Eckart theorem for the group SU(2) x SU(2): 

AB h (Qklkl, ?hb Qm2k2) =(A& jzm2]jlml)(Bb, jzk2ljl kr)(jillTABllbf. (3.11) 

(3.12) 
The matrix elements (3.11) are different from zero in principle if 

Iji -jzI A, B =S ji + j z  
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is atisfied. This has as a consequence that the pair A, B can take either the values 
A=0,1,2,  ... and B=0,  1,2 ,... (3.13) 

(3.14) 

n e  problem of decomposing a given operator 6 in IT components with respect to 
su(2)xSU(2) can be done in the following way (Dirl and Kasperkovitz 1976, Dirl 
1974$b): 

(3.15) 

ea.b.[O] = (2A + 1)(2B + 1) 

We assume just as before that the right-hand sides of equations (3.15,16) are 
meaningful in the usual sense and that the operator 0 belongs to the class of operators 
whose domain of definition contains (at least) the elements of the basis (2.8). 

In the following sections we introduce mainly two different types of IT which are 
closely related to the representation theory of the group SU(2), and we try to define with 
them new ones which are sufficient to express every IT component as a unique linear 
combination of them. 

4, IT within the group algebra 

The first type of IT which we introduce consists of elements of the tensor basis of 
‘“d(SU(2)) (Dirl and Kasperkovitz 1976, Kasperkovitz and Dirl 1974). They are 
defined with the matrix elements U’,,, (see equation (2.7)) and the Clebsch-Gordan 
coefficients (CG coefficients) of SU(2) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(L) TM i;J 

(R) TK j’;J’- - 

‘L)E’,k= (- 

(R)E~,k ,= ( - l ) j ’+k‘C( j ’m’ ,  j ’ -k’JJ’m’-k I  ) (R) j’.J’ 

(- l)”k(jM+ k, j-klJIM)(L)EL++k 
k 

(- I)j’+klr K+ k‘, i’- k r / J r ~ ( R ) ~ & + k , , ~ r  

( jm,j  - klJm - k )  (L) j.J 

k’ 

J 

r 
The following sets of operators: 

{&)T#: -JcM<J)  (4.5) 

(4.6) T F :  - Jr K J’} 

are ROf rank J, 0 and 0, J’ with respect to SU(2) xSU(2). Because of equation (2.19) 
We have 

(4.7) (L) j;J(R)Tj‘;J’= a . . , ( L ) p ; J ( R )  j ;J’  TM K JI M TK 



834 R Did 

(4.8) 

forms an IT of rank J, S. The following properties of the IT components (‘)TE ( i  =left 
and right) are of importance if one tries to defme some new ones 

(4.9) 
( i )~g(~)~$’ ’=  (- 1)2j+3[(2~+ 1) (2~1+ i)~l/’ 1 ~ ( q ~ j ,  ~J’)(JM, J’K~J’M+K)(~)TE;, 

(4.10) 

where the coefficients W(abcd, if) are the usual Racah coefficients (Rose 1957). When 
calculating the matrix elements of the IT components (4.1,2,8) one has to use equations 
(2.20,21), (3.11) and the well known symmetry relations of the CG coefficients of SU(2) 
(Rose 1957). 

(i) iJ+ - M(i) j . 1  TM -(-I) T-M 

3” 

5. Matrix elements of the anirreps of SU(2) as IT 

The second type of IT which we introduce is closely related to the matrix elements of the 
unirreps of SU(2) (Did and Kasperkovitz 1976, Judd and Vogel 1975): 

[QE%(o) = QSd~)f(u) for all f E L~(su(~))  (5.1) 

U(w, w ~ ) Q ~ % J + ( w I ,  02)  = 1 D&M(W)D~,K(WZ)Q~RK. (5.2) 

These IT components of rank R, R have properties resulting from the properties (Rose 
1957) of the corresponding matrix elements of the unirreps of SU(2): 

(5.3) 

M’K‘ 

2R+M+K RR 
Q s = ( - l )  Q-M,-K 

When calculating the matrix elements of the IT components (5.1) one has to use the 
following relation: 

6. Correlations between specid IT 

The special IT (4.1, 2) and (5.1) allow us to construct much more general oms. The 
following list shows that one has a very large number of possibilities to define with 



Now it is obvious that the operators (6.1-8) are IT components of rank A, B. However, 
one cannot expect that these operators are all linearly independent respective of the fact 
that there do not exist correlations between them. In fact if one investigates the 
following operators one obtains the following results. 

(6.9) 

(6.10) 

(6.11) 

TO prove these relations one has to use equations (6.3, 5) and note that J must be an 
integer. Now, inserting equation (6.10) in equation (6.1) or equation (6.12) in equation 
(6.2) we obtain for 

jT(EJMB= ab (- 1)J+A-B j*$}AB (6.13) 

iT(JB)AB ab = (- 1)JfA-B j$hJA}AB (6.14) 

where we have used equation (5.4), the decompositions (use equations (3.15,16)) 

Qa,b-K AA (R)Tj ;J-C(Ab-K,  K - J K I ~ ) ' $ $ } A H  (6.15) 

' " ) T ~ ~ Q $ + ~ =  (J- K, A b + (6.16) 

and the definition of the Racah coefficients (Rose 1957). (Note that equations (6.9-12) 
are contained as special cases.) After a straightforward calculation by using equations 

H 

H 
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(6.10,15), (5.4) one obtains 

jjP$J?M= (- 1)2j-J’[(2R + 1)(2J+ 1)(2J‘+ i)y2 
xC J” (- ~>QP+ 1>”2W(Jjsrj, j ~ ’ )  W(RTBJ”, ~ ~ ‘ ) j @ ’ 3 ~ ~  (6.17) 

where the operators (6.5) are immediately expressible in terms of the IT components 
(6.1) by means of the relation (6.13). Clearly in the same way the operators (6.6) can be 
evaluated in terms of the operators (6.2) or (6.4) by an analogous formula. Finally one 
can expect that there must exist a relation between the operators (6.7) and (6.8). 
jj’p’s’)AB= ah (-~)’+A-R[(~R + 1)(2j’+ 1)11/~ 2 ( 2 ~ ” +  i)1/2 ~ ( J A B J ’ ,  ~ t ~ f l ~ ; r m ~ .  

(6.18) 
R” 

For the proof of this relation one has to use the decomposition 

(R)TMQR“R”, a - ~ b + ~  (U TM j‘.J= (R” a-M, J’MIA”U)(J -K, R” b+KIB”b)”’FSg’’A’B’ 

(6.19) 

andequation (5.4). Because of thelinear dependences (6.13,14,17,18) wecanassume 
that at most the operators (6.2) and (6.3) are linearly independent and probably that the 
last ones are expressible as linear combinations of the operators (6.7). 

When calculating the matrix elements of the operators (6.3,2,7) we need the 
following formulae: 

j F A B Q i 2 k z  crb = Sjb( - 1) 

A”B” 

2j+A+B+J [(2A + 1)(2B + 1)(2J+ l)(Zj + 1)]1’2 

(6.20) 

(j#’PJs’Ml~2) = 6jj1S~jz(-1)A+B[(2A + 1)(2B + 1)(2J+ 1)(25‘+ l)]’” 

X W(ARjj, 4’) W(BRj’j’, J’j). (6.25) 
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7, omplete sets of special rr 

ne term ‘completeness of a set of IT’ already used in 0 4 refers to the following linear 
spa= of operators: 

V Q = { ~ :  go=’{Q’,r3>. (7.1) 
@e symbol 90 denotes the domain of definition of the operator 0.) This means that 
wedefine a set of IT (which are composed only of the operators (4.1,2) and (5.1)) so that 
every operator 6 E VQ can be expressed as a unique linear combination of these IT. It is 
obvious that just the operators (6.7) have this property. However, one must be aware 
that the operators (6.7) for a given pair j ,  j ‘  are only different from zero if 

( j - j ’ l  d R, A, B 9 j +  j ’  

IR - JI 9 A d R + J, 
( R  -J’I s B s R +J’, 

O S J 9 2 j  

0s J’ s 2j’ 
(7.2) 

are satisfied and those operators which are different from the zero operator are linearly 
dependent for fixed A, B if R, J, J‘ varies. The last assertion follows immediately from 
equation (6.25). However, to be sure that for a fixed j ,  j‘ all the allowed A, B can be 
reallzed we choose for the quantities J, R, J’ the following values: 

J=2j,  R=j+j’, J’ = 2 j’. (7.3) 

Therefore the desired expansions are of the form 

ab 

where the equation (7.3) has to be taken into account. The coefficients 
appearing in the expansion (7.5) are given by (use equation (4.25)) 

0’11 ~.4~Tqb’)  = , ( ( i i ’ T ( 2 i , i + i ’ , 2 i ’ ) ~ ~ j / ) ~ ~ ~ A B ) .  (7.6) 

8. Special rr composed of QE and elements of the enveloping algebra 

It is well known (Rose 1957) that the elements 

(8.1) (i)J - -+ 1 (i)J*, ( i ) ~  - (i)J3 
0- 

* l -  z 
Ofthe left- or right-Lie algebra of SU(2) are IT components of rank 1,O or 0, 1 with 

to SU(2) x SU(2). As suggested by the relations (4.9-12) one can expect similar 
for the operators (8.1). Indeed this is easily proved by direct calculation and 

we get the relations (Marshalek 1975) 
N J~‘C M (1 -M, lM(OO)Q’~v~)JM=C M (1 -M,  lM(OO)cL’{-~Q& (8.2) 

(8.3) 
a) 

J M = C  (1 -K, 1K(00)Q$-kR’JK = E  (1-K, lK(OO)‘R’J-KQ~K. 
K K 
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Furthermore it is well known that the operators (8.1) can be used (by meam of 
equations (3.15,16)) for the definition Of IT of rank J, 0 respectively 0, J’ which hiong 
to the enveloping algebra. Denoting the IT components of such IT of rank J, 0 by 

( L ) ~ $  = {power series in ( L ) ~ M , j  

‘R’Zi=C (J -M,  JMIOO)Q{L,K ( L ) z $  

(8.4) 

it is obvious that analogously to equation (6.9) one can use the relation 

(8.5) 
M 

for the definition of the corresponding IT components of an IT of rank 0, J. Of “ e  
such relations can be of some interest for practical calculations since it suffices to 
construct the IT components (8.4) and by means of equation (8.5) obtain immediately 
the other IT. We realize that these operators are related to the special IT componeats 
(4.1,2) in the following way: 

(8.6) 

(8.7) 

( L ) z J  - cj.J 
M- M 

j 

(R)zJ’  - 1 p’ (R)Tj;J‘ 
K- K .  

i 

The coefficients cJTJ are given as the quotient of the corresponding reduced matrix 
elements. For example, in the special case J = 1 we obtain, because of 

‘L’J,QLk= - [ j ( j +  1)]1’2(1M, jmJjM+m)Qk+,k (8.8) 

1kf, jmljM+m)QL+,,,,k (8.9) 0-1 j 1 i - zj-1 3 
Th Q m k - a j f ( - l )  ( 2 j + l )  ( 

for the coefficients 

3 
(8.10) 

(For the operators (R)JK and (R)TF if we apply them to the elements @,,k the relations 
are exactly the same as (8.8,9).) Finally the operators 

( L ) z L ( : R ) z ~  = (R)z-(L)zL= zJ& (8.11) 

are IT components of an IT of rank J, J’. 
According to similar arguments stated in 0 6 only the operators of the W e  

(8.12) 

(8.13) 

Z(.B J R J ‘ ) A B  = (Ju -M, RM(Aa)(R b - K, J‘K(Bb)‘L’Z;i_MQ~~_K(R)Z~ (8.14) 
M K  

can be of importance because one can show that there exist relations analogous to @13, 
14, 17, 18). However, one must be aware that even the operators (8.14) cannot be 
complete in the sense of equation (7.5). This means that the operators (8.12-14) can 
only be complete for a certain class of operators. 
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merefore as a consequence of the preceding considerations, an expansion of the 

.- 
o= 1 C ; ; l B Z y J A B  (J  fixed) 

AB 
(8.15) 

ab 

(which was in principle discussed by Beers and Millman 1975, with J = 1) holds only for 
operators whose reduced matrix elements are proportional to those of the operators 
(8.12): 
(i,lTtbTO]llj2) = multiple of (jlllZ{“J’AB/[j2) for all jl, j2  and A, B (8.16) 

and where the IT components T;fbfhd0] are only different from zero if 

JA -JISB S A  +J (8.17) 

is satisfied. The calculation of the coefficients ctr can be somewhat simplified if one 
ws (3.16) and (5.5): 

1 Qa”,A Ta”B,ab[o]= c $ ~ ( ~ A  +1)(AA, JB-A(BB)‘R’Zi-~. (8.18) 

(Further simplifications arise if one takes the special values A = B if A B B or B = A if 
A Q B.) However, one must not forget that the ranks of the IT components occurring in 
equation (8.15) must satisfy the conditions 

(J fixed). (8.19) 

Finally in order to discuss if it is possible to find operators which are linear 
combinations of IT of the type (8.12-14) with properties similar to creation and 
destruction operators, we discuss IT of rank 1, $. For this purpose we need (cf equation 
(8.8)) also 

‘R’JKQ’,k= - [ j ( j  + 1)]1/2( 1K, + k ) Q k K + k .  (8.20) 

AA+ AB 

a“ 

1 A = 0 , ~ , 1 ,  ... and lA-J lSBGA+J 

We obtain by utilizing (8.8,21), (5.6) and the definition of the Racah coefficients for 

Z~”ABQ!,,~=(-l)B(2j+l)[j(j+ 1)(2A+1)(2B+ 1)J”’ 

(8.21) 

z‘dBaC?’,, = (- 1)A[(2j + 1)(2A + 1)(2B + 1)]’12 2 (- l)’”-’vp+ 1)J1l2 
j’ 
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And for the third type of IT components we have manufactured for 

(8.27) 
This shows that we cannot introduce such IT of rank i, 3 (which are linear combinations 
of the operators (8‘12-14)) where the operators (8.1) occur linearly, which raises (or 
lowers) theindices j + j + i ( - $ ) ,  m + m + a ,  k +  k + b  of the elements (2.8). (wecan 
define such operators only as linear combinations of wcomponents of the type (6.7).) 

9. Conclusions 

It was the aim of this paper to show by means of the example L2(SU(2)) how to 
construct, from simple but convenient operators, ITwith respect to SU(2) X SU(2) using 
this Hilbert space as the representation space. However, the construction of such IT 
presupposes knowledge of the unirreps, the unitary matrices U relating the unirreps to 
their complex conjugates and the CG coefficients for SU(2). In the case of the group 
SU(2) X SU(2) we are able: 

(i) to construct a complete set of IT whose elements are composed of operators 
which are closely related to the representation theory of the group SU(2); 

(ii) to show operator identities and linear dependences between special IT, which 
@e rise to correlation of Racah coefficients (compare equation (6.18) with equation 
(6.26)); and 

(iii) to construct special IT (composed of IT which are closely related to the matrix 
ekments of the unirreps of SU(2) and IT belonging to the enveloping algebras) Which 
Seem to be useful for a wide class of physical problems. 

It is obvious that the preceding considerations concerning L2(SU(2)) can be 
ferred to every2group G being finite or compact continuous and the corresponding 
Hilbert space L (G), provided one knows the unirreps, the unitary matrices U relating 
the unirreps to their complex conjugates and the CG coefficients for G. As already 
mentioned the construction of operator bases (of the type (6.7) or (8.12-14)) especially 
becomes of practical importance if one deals with physical systems whose State spa? 
are isomorphic to (invariant subspaces or coset spaces of) L2( G). Further” if ” 

compact continuous, operator identities analogous to (8.2,3) or (8.5) become impor- 
tant because they simplify the calculation of the elements of the Lie algebra in the case 
where one knows the elements of one of the two Lie algebras. Besides thisy ITof *b: 
type (8.12,13) can used to construct representations of Lie algebras of ‘larger 
gr0W 0‘3 G (e.g. SL(3, R) 3 SU(2), where iinear combinations of IT (8.12) of rank 2’ 
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B with B = 1,2 ,3  can be identified with elements of the Lie algebra of E(3, R) of a 
s,,itably defined multiplier representation (SijaElci 1 975)). Apart from this, operator 
identities analogous to equation (6.18) should be very useful to derive relations 
hmeeR the Racah coefficients of G, 
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